cufflinks.datagen module

cufflinks.datagen.bars(n=3, n_categories=3, prefix='category', columns=None, mode='abc')[source]

Returns a DataFrame with the required format for a bar plot

n : int
Number of points for each trace
n_categories : int
Number of categories for each point
prefix : string
Name for each category
columns : [str]
List of column names
mode : string
Format for each item
‘abc’ for alphabet columns ‘stocks’ for random stock names
cufflinks.datagen.box(n_traces=5, n=100, mode=None)[source]

Returns a DataFrame with the required format for a box plot

n_traces : int
Number of traces
n : int
Number of points for each trace
mode : string
Format for each item
‘abc’ for alphabet columns ‘stocks’ for random stock names
cufflinks.datagen.bubble(n_categories=5, n=10, prefix='category', mode=None)[source]

Returns a DataFrame with the required format for a bubble plot

n_categories : int
Number of categories
n : int
Number of points for each category
prefix : string
Name for each category
mode : string
Format for each item
‘abc’ for alphabet columns ‘stocks’ for random stock names
cufflinks.datagen.bubble3d(n_categories=5, n=10, prefix='category', mode=None)[source]

Returns a DataFrame with the required format for a bubble3d plot

n_categories : int
Number of categories
n : int
Number of points for each trace
prefix : string
Name for each trace
mode : string
Format for each item
‘abc’ for alphabet columns ‘stocks’ for random stock names
cufflinks.datagen.choropleth()[source]

Returns

cufflinks.datagen.getName(n=1, name=3, exchange=2, columns=None, mode='abc')[source]
cufflinks.datagen.heatmap(n_x=5, n_y=10)[source]

Returns a DataFrame with the required format for a heatmap plot

n_x : int
Number of x categories
n_y : int
Number of y categories
cufflinks.datagen.histogram(n_traces=1, n=500, mode=None)[source]

Returns a DataFrame with the required format for a box plot

n_traces : int
Number of traces
n : int
Number of points for each trace
mode : string
Format for each item
‘abc’ for alphabet columns ‘stocks’ for random stock names
cufflinks.datagen.lines(n_traces=5, n=100, columns=None, dateIndex=True, mode=None)[source]

Returns a DataFrame with the required format for a scatter (lines) plot

n_traces : int
Number of traces
n : int
Number of points for each trace
columns : [str]
List of column names
dateIndex : bool
If True it will return a datetime index if False it will return a enumerated index
mode : string
Format for each item
‘abc’ for alphabet columns ‘stocks’ for random stock names
cufflinks.datagen.ohlc(n=100)[source]

Returns a DataFrame with the required format for a candlestick or ohlc plot df[[‘open’,’high’,’low’,’close’]]

n : int
Number of ohlc points
cufflinks.datagen.ohlcv(n=100)[source]

Returns a DataFrame with the required format for a candlestick or ohlc plot df[[‘open’,’high’,’low’,’close’,’volume’]

n : int
Number of ohlc points
cufflinks.datagen.pie(n_labels=5, mode=None)[source]

Returns a DataFrame with the required format for a pie plot

n_labels : int
Number of labels
mode : string
Format for each item
‘abc’ for alphabet columns ‘stocks’ for random stock names
cufflinks.datagen.scatter(n_categories=5, n=10, prefix='category', mode=None)[source]

Returns a DataFrame with the required format for a scatter plot

n_categories : int
Number of categories
n : int
Number of points for each category
prefix : string
Name for each category
mode : string
Format for each item
‘abc’ for alphabet columns ‘stocks’ for random stock names
cufflinks.datagen.scatter3d(n_categories=5, n=10, prefix='category', mode=None)[source]

Returns a DataFrame with the required format for a scatter3d plot

n_categories : int
Number of categories
n : int
Number of points for each trace
prefix : string
Name for each trace
mode : string
Format for each item
‘abc’ for alphabet columns ‘stocks’ for random stock names
cufflinks.datagen.scattergeo()[source]

Returns

cufflinks.datagen.sinwave(n=4, inc=0.25)[source]

Returns a DataFrame with the required format for a surface (sine wave) plot

n : int
Ranges for X and Y axis (-n,n)
n_y : int
Size of increment along the axis
cufflinks.datagen.surface(n_x=20, n_y=20)[source]

Returns a DataFrame with the required format for a surface plot

n_x : int
Number of points along the X axis
n_y : int
Number of points along the Y axis